全球温室气体监视网
今年5月的世界气象大会批准了全球温室气体监视网,这份WMO公报正是以此为封面故事。这项雄心勃勃的倡议旨在对温室气体进行持续监测,以便能够说明与人类活动有关的温室气体排放以及天然源和汇。这将为实现《巴黎协定》将全球升温控制在远低于超出工业化前水平摄氏2°C并力争1.5°C的目标提供重要信息和支持。
尽管科学界对气候变化及其影响已有广泛的了解,但关于碳循环以及海洋、陆地生物圈和多年冻土区的通量仍存在一些不确定因素。
《温室气体公报》指出“然而,这些不确定性决不能阻碍采取行动。相反,它们凸显了制定灵活、适应性战略的必要性,以及风险管理在实现净零排放和《巴黎协定》目标道路上的重要性。提供准确、及时和可操作的温室气体通量数据变得更加重要。”
报告指出有必要更多地获取以下信息:
- 反馈机制:地球气候系统具有多重反馈回路,例如,气候变化导致土壤碳排放量增加或海洋碳吸收量减少,欧洲2018年和2022年的干旱正说明了这一点;
- 临界点:气候系统可能接近所谓的“临界点”,当达到临界点时,一定程度的变化会导致自我加速和可能不可逆转的连锁变化。例如,亚马逊雨林可能迅速枯萎、北部海洋环流减慢或大冰盖不稳定;
- 自然变率:三种主要温室气体在人为信号(如受厄尔尼诺现象驱动)叠加的自然过程的驱动下具有很大的变率。这种变率可以放大或抑制短期内观测到的变化;
- 非CO₂温室气体:气候变化是由多种温室气体驱动的,而不仅仅是CO2。这些气体在大气中的存在时间不同,其全球升温潜势(GWP)高于CO2,而且未来的排放量也不确定。
新的全球温室气体监视网拟于2028年投入运行。
2022年温室气体浓度
美国国家海洋和大气管理局(NOAA)的年度温室气体指数(AGGI)显示,从1990年到2022年,长寿命温室气体对气候的变暖效应(称为辐射强迫)增加了49%,其中CO2约占增加量的78%。
表1:GAW温室气体实地观测网络中主要温室气体的全球表面年均丰度(2022 年)和趋势。单位为干空气摩尔分数,不确定性为68%的信度区间。
| CO2 | CH4 | N2O |
2022年全球平均丰度 | 417.9±0.2 ppm | 1923±2 ppb | 335.8±0.1 ppb |
2022年相对于1750年a的丰度 | 150% | 264% | 124% |
2021-2022年绝对增长 | 2.2 ppm | 16 ppb | 1.4 ppb |
2021-2022年相对增长 | 0.53% | 0.84% | 0.42% |
过去10年的年均绝对增幅 | 2.46 ppm/年 | 10.2 ppb/年 | 1.05 ppb/年 |
二氧化碳是大气中最重要的温室气体,约占气候变暖效应的64%,这主要是由化石燃料燃烧和水泥生产造成的。
2021年至2022年的年均增长率为百万分之2.2(ppm),略低于2020年至2021年以及过去十年的增长率(2.46 ppm/年)。最可能的原因是,在连续几年出现拉尼娜现象后,陆地生态系统和海洋对大气CO2的吸收增加。因此,2023年厄尔尼诺事件的发展可能会对温室气体浓度产生影响。
甲烷是一种强大的温室气体,在大气中可存留十年左右。
在长寿命温室气体的变暖效应中,甲烷约占16%。
排放到大气中的甲烷大约40%来自自然源(如湿地和白蚁),大约60%来自人为源(如反刍动物、水稻种植、化石燃料开采、垃圾填埋和生物质燃烧)。
2021年至2022年的增幅略低于2020年至2021年的创纪录增幅,但大大高于过去十年的年均增幅。
一氧化二氮既是强大的温室气体,也是消耗臭氧层的化学品。它约占长寿命温室气体辐射强迫的7%。
排放到大气中的N2O既有自然源(约60%)也有人为源(约40%),包括海洋、土壤、生物质燃烧、化肥使用和各种工业过程。
就N2O而言,2021年至2022年的增幅高于现代记录中已观测的任何时间。