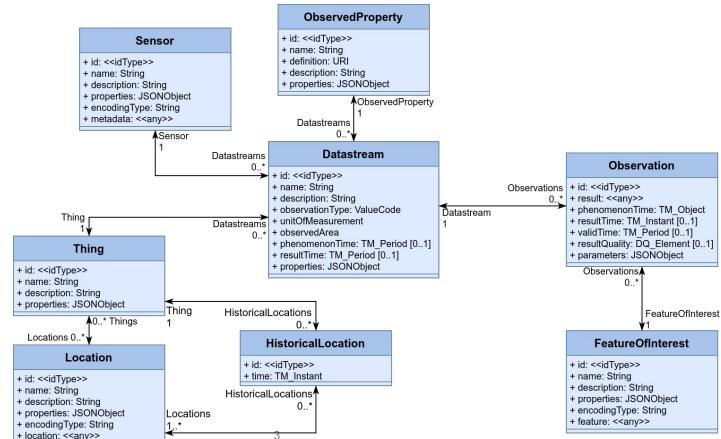


OGC SensorThings API?


- A standard for exchanging sensor data and metadata
 - o Historic data & current data
 - JSON Encoded
 - RESTful
 - o Adapting OASIS OData URL patterns and query options
 - Supporting ISO MQTT messaging
- Easy to use & understandable
 - o Discoverable with only a web browser

SensorThings API 1.1 – Data Model

SensorThings API 1.1 – API

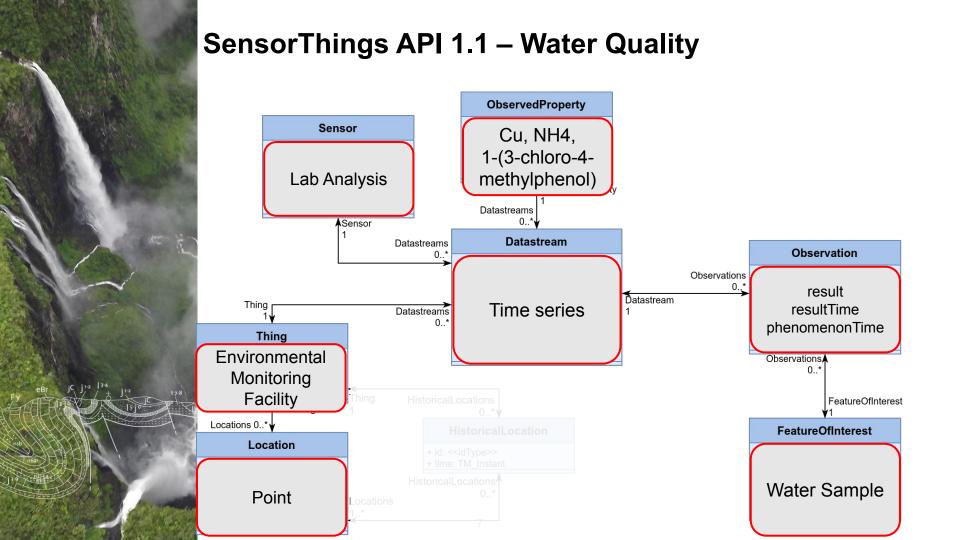
HTTP:

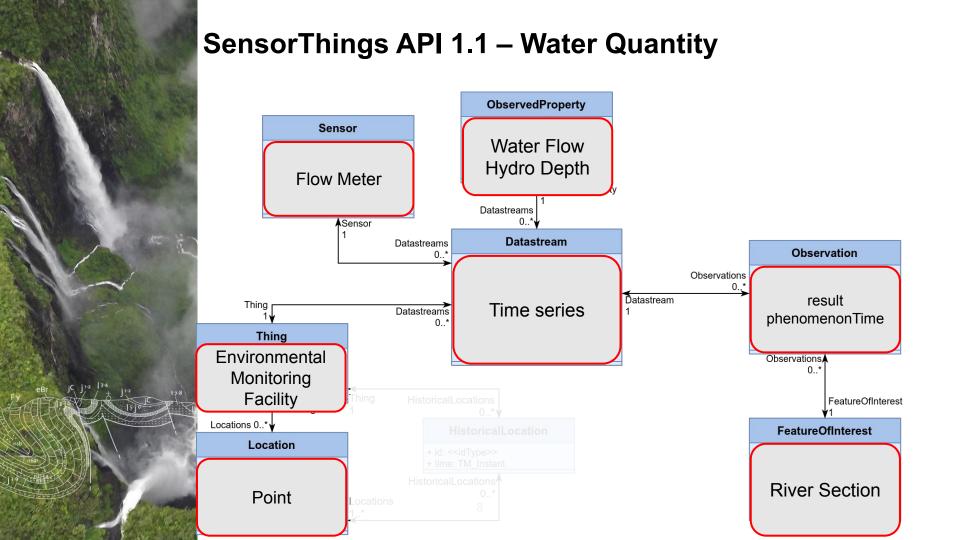
	GET	POST	PATCH	DELETE
v1.1	Get index			
v1.1/Type	Get all of type	Create		
v1.1/Type(id)	Get one of type		Update	Delete
v1.1/Type(id)/Entity	Get linked entity			
v1.1/Type(id)/EntitySet	Get all linked	Create Linked		

MQTT:

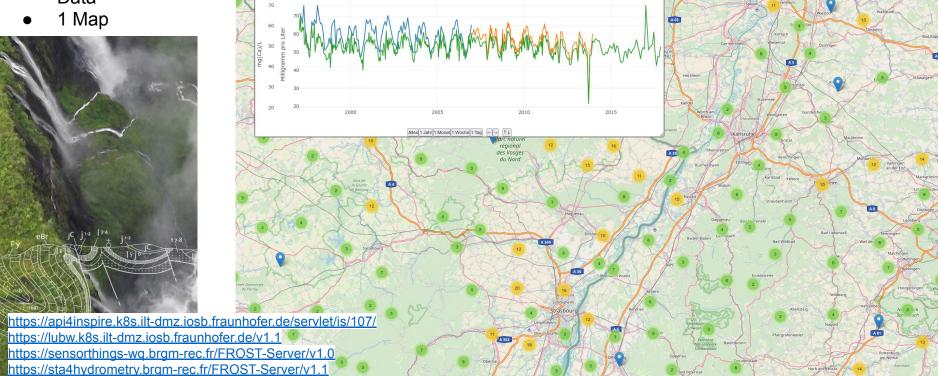
- 1. Subscribe
 - o v1.1/Things
 - v1.1/Datastreams(x)
 - v1.1/Datastreams(x)/Observations
 - o etc.
- 2. Get Notified

- Fully Explorable with just a browser
- Composable Responses
- Powerful filtering


SensorThings live demo


- https://airquality-frost.k8s.ilt-dmz.iosb.fraunhofer.de/v1.1
 - ~760 000 000 Observations
 - ~21 000 Datastreams
 - ~5 000 Stations

SensorThings API 1.1 – Water Quality / Quantity ObservedProperty + id: <<idType>> Sensor + name: String + id: <<idType>> + definition: URI + description: String + name: String + properties: JSONObject + description: String + properties: JSONObject **♦**ObservedProperty + encodingType: String + metadata: <<any>> Datastreams **▲**Sensor **Datastream** Datastreams Observation Observations + id: <<idType>> 0 * + result: <<anv>> + phenomenonTime: TM Object Datastream Thing Time series + resultTime: TM Instant [0..1] Datastreams + validTime: TM Period [0..1] + resultQuality: DQ Element [0..1] Thing + parameters: JSONObject Observations. FeatureOfInterest Host / Environmental **FeatureOfInterest** Monitoring Sample Facility +Location +Sampling



SensorThings API 1.1 – Data Model ObservedProperty Sensor Cu, NH4 1874 Lab Analysis 359 ObservedProperty Datastreams ASensor **Datastream** Datastreams Observation Time series Observations 136 345 216 9 577 603 Datastream Thing Datastreams 14 / Datastream 518 / Thing 69 / Fol Thing 5110 / ObsProp Observations **EMF** 18 478 FeatureOfInterest Locations 0..* **FeatureOfInterest** Location Water Sample Point 1 962 932 _ocations 18 478

FrancoGermanic Flow – API4INSPIRE

French & German Data

This Works!

But can we improve on it?

=> could water quantity time series (a.k.a Water ML 2.0 Part 1) benefit from this experience ?

Should we push this to Standards/Best Practice?

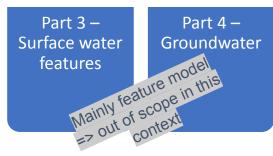
- Feedback from various implementers between
 - The previous OGC Pattern : using OGC WebService (like Sensor Observation Service) based on XML
 - o And of the new pattern : using OGC APIs (like SensorThings API) based on JSON and REST full pattern
- => most have decommissioned their SOS and replaced them by SensorThings API
- => the learning curve is drastically different : both for IT and domain experts
- => observation data filtering via SensorThings API is way better than what is feasible in solutions such as SOS 2.0 (ex: which station observed a river flow above threshold 'xxx' in 2022, near Paris)
- => truly REST ful APIs work fine on read but also, in creation/update mode. Which is a gamechanger when deploying in running systems

Ok, let's push this to Standards/Best Practice

- Suggestion from the Water Quality IE experience
 - We plan to contribute back to the standard baseline
 - Water ML2.0 Part 1 'Timeseries'
 - Needs to be updated to take into account the revision of O&M (ISO 19156:2011) => Observations, Measurements and Samples a.k.a 'OMS' (ISO 19156:2023)
 - And also TimeSeries ML (issued from Part 1): also currently integrating OMS
 - And define a best practice to expose it using SensorThings API
 - Water ML 2.0 Part 5 'Water Quality'
 - Building on the output of the Water Quality IE
 - High chance the IE will recommend in its engineering report to
 - Generate a Best Practice document
 - And also revise Part 1 (as we touched quantity during the IE)
 - => more details on the IE itself on the 29th

Ok, let's push this to Standards/Best Practice

Suggestion from the Water Quality IE experience



Ok, let's push this to Standards/Best Practice

Some supporting national/EU projects from our end

PROGRAMME NATIONAL DE RECHERCHE SUR L'EAU

- French Research project, 53 Million €, 10 years
- https://www.onewater.fr/en (ANR project : 22-PEXO-0009)
- Many domain objectives including FAIR (interoperable) Water Data Exchange

- EU joint research partnserhip
- https://www.water4all-partnership.eu/
- 31 countries, 7 years, 81 Million € for the 2 years.
- Many domain objectives including FAIR (interoperable)Water Data Exchange
- Both are running now => join the effort!

